Innovation, Technology & Law

Blog over Kunstmatige Intelligentie, Quantum, Deep Learning, Blockchain en Big Data Law

Blog over juridische, sociale, ethische en policy aspecten van Kunstmatige Intelligentie, Quantum Computing, Sensing & Communication, Augmented Reality en Robotica, Big Data Wetgeving en Machine Learning Regelgeving. Kennisartikelen inzake de EU AI Act, de Data Governance Act, cloud computing, algoritmes, privacy, virtual reality, blockchain, robotlaw, smart contracts, informatierecht, ICT contracten, online platforms, apps en tools. Europese regels, auteursrecht, chipsrecht, databankrechten en juridische diensten AI recht.

Berichten in Kunstmatige Intelligentie
EU Artificial Intelligence Act: The European Approach to AI

Stanford - Vienna Transatlantic Technology Law Forum, Transatlantic Antitrust and IPR Developments, Stanford University, Issue No. 2/2021

New Stanford tech policy research: “EU Artificial Intelligence Act: The European Approach to AI”.

Download the article here: Kop_EU AI Act: The European Approach to AI

EU regulatory framework for AI

On 21 April 2021, the European Commission presented the Artificial Intelligence Act. This Stanford Law School contribution lists the main points of the proposed regulatory framework for AI.

The Act seeks to codify the high standards of the EU trustworthy AI paradigm, which requires AI to be legally, ethically and technically robust, while respecting democratic values, human rights and the rule of law. The draft regulation sets out core horizontal rules for the development, commodification and use of AI-driven products, services and systems within the territory of the EU, that apply to all industries.

Legal sandboxes fostering innovation

The EC aims to prevent the rules from stifling innovation and hindering the creation of a flourishing AI ecosystem in Europe. This is ensured by introducing various flexibilities, including the application of legal sandboxes that afford breathing room to AI developers.

Sophisticated ‘product safety regime’

The EU AI Act introduces a sophisticated ‘product safety framework’ constructed around a set of 4 risk categories. It imposes requirements for market entrance and certification of High-Risk AI Systems through a mandatory CE-marking procedure. To ensure equitable outcomes, this pre-market conformity regime also applies to machine learning training, testing and validation datasets.

Pyramid of criticality

The AI Act draft combines a risk-based approach based on the pyramid of criticality, with a modern, layered enforcement mechanism. This means, among other things, that a lighter legal regime applies to AI applications with a negligible risk, and that applications with an unacceptable risk are banned. Stricter regulations apply as risk increases.

Enforcement at both Union and Member State level

The draft regulation provides for the installation of a new enforcement body at Union level: the European Artificial Intelligence Board (EAIB). At Member State level, the EAIB will be flanked by national supervisors, similar to the GDPR’s oversight mechanism. Fines for violation of the rules can be up to 6% of global turnover, or 30 million euros for private entities.

CE-marking for High-Risk AI Systems

In line with my recommendations, Article 49 of the Act requires high-risk AI and data-driven systems, products and services to comply with EU benchmarks, including safety and compliance assessments. This is crucial because it requires AI infused products and services to meet the high technical, legal and ethical standards that reflect the core values of trustworthy AI. Only then will they receive a CE marking that allows them to enter the European markets. This pre-market conformity mechanism works in the same manner as the existing CE marking: as safety certification for products traded in the European Economic Area (EEA).

Trustworthy AI by Design: ex ante and life-cycle auditing

Responsible, trustworthy AI by design requires awareness from all parties involved, from the first line of code. Indispensable tools to facilitate this awareness process are AI impact and conformity assessments, best practices, technology roadmaps and codes of conduct. These tools are executed by inclusive, multidisciplinary teams, that use them to monitor, validate and benchmark AI systems. It will all come down to ex ante and life-cycle auditing.

The new European rules will forever change the way AI is formed. Pursuing trustworthy AI by design seems like a sensible strategy, wherever you are in the world.

Meer lezen
De Wet op de Artificiële Intelligentie

Een bewerkte versie van deze bijdrage is gepubliceerd op platform VerderDenken.nl van het Centrum voor Postacademisch Juridisch Onderwijs (CPO) van de Radboud Universiteit Nijmegen. https://www.ru.nl/cpo/verderdenken/columns/wet-artificiele-intelligentie-belangrijkste-punten/

Nieuwe regels voor AI gedreven producten, diensten en systemen

Op 21 april 2021 presenteerde de Europese Commissie haar langverwachte Wet op de Artificiële Intelligentie (AI). Deze concept Verordening geeft regels voor de ontwikkeling, commodificatie en gebruik van AI gedreven producten, diensten en systemen binnen het territorium van de Europese Unie. Het was bemoedigend te zien dat het team van President Ursula von der Leyen een belangrijk aantal van onze strategische aanbevelingen op het gebied van de regulering van AI heeft overgenomen, danwel zelfstandig tot dezelfde conclusies is gekomen.

Doelstellingen wettelijk kader voor AI

De concept Verordening biedt horizontale overkoepelende kernregels voor kunstmatige intelligentie die op alle industrieën (verticals) van toepassing zijn. De wet beoogt de hoge maatstaven van het EU Trustworthy AI paradigma te codificeren, dat voorschrijft dat AI wettig, ethisch en technisch robuust dient te zijn en daartoe 7 vereisten hanteert.

De Wet op de Artificiële Intelligentie heeft de volgende 4 doelstellingen:

1. ervoor zorgen dat AI-systemen die in de Unie in de handel worden gebracht en gebruikt, veilig zijn en de bestaande wetgeving inzake grondrechten en waarden van de Unie eerbiedigen;

2. rechtszekerheid garanderen om investeringen en innovatie in AI te vergemakkelijken;

3. het beheer en de doeltreffende handhaving van de bestaande wetgeving inzake grondrechten en veiligheidsvoorschriften die van toepassing zijn op AI-systemen, verbeteren;

4. de ontwikkeling van een eengemaakte markt voor wettige, veilige en betrouwbare AI-toepassingen vergemakkelijken en marktversnippering voorkomen.“

Risico gebaseerde aanpak kunstmatig intelligente applicaties

Om deze doelstellingen te realiseren combineert de concept Artificial Intelligence Act een risk-based approach op basis van de pyramid of criticality, met een modern, gelaagd handhavingsmechanisme. Dit houdt onder meer in dat er voor AI applicaties met een verwaarloosbaar risico een licht wettelijk regime geldt, en onacceptabel risico applicaties verboden worden. Tussen deze 2 uitersten gelden er naarmate het risico toeneemt strengere voorschriften. Deze variëren van vrijblijvende zelfregulerende soft law impact assessments met gedragscodes, tot zwaar, multidisciplinair extern geauditeerde compliance vereisten inzake kwaliteit, veiligheid en transparantie inclusief risicobeheer, monitoring, certificering, benchmarking, validatie, documentatieplicht en markttoezicht gedurende de levenscyclus van de toepassing.

Handhaving en governance

De definitie van hoog risico AI applicaties binnen de diverse industriële sectoren is nog niet in steen gehouwen. Een ondubbelzinnige risicotaxonomie zal bijdragen aan rechtszekerheid en biedt belanghebbenden een adequaat antwoord op vragen over aansprakelijkheid en verzekering. Om ruimte voor innovatie door SME’s waaronder tech-startups te waarborgen, worden er flexibele AI regulatory sandboxes geïntroduceerd en is er IP Action Plan opgesteld voor intellectueel eigendom. De concept Verordening voorziet tenslotte in de installatie van een nieuwe handhavende instantie op Unieniveau: het European Artificial Intelligence Board. De EAIB zal op lidstaatniveau worden geflankeerd door nationale toezichthouders.

Meer lezen
We hebben dringend een recht op dataprocessing nodig

Deze column is gepubliceerd op platform VerderDenken.nl van het Centrum voor Postacademisch Juridisch Onderwijs (CPO) van de Radboud Universiteit Nijmegen. https://www.ru.nl/cpo/verderdenken/columns/we-dringend-recht-dataprocessing-nodig/

5 juridische obstakels voor een succesvol AI-ecosysteem

Eerder schreef ik dat vraagstukken over het (intellectueel) eigendom van data, databescherming en privacy een belemmering vormen voor het (her)gebruiken en delen van hoge kwaliteit data tussen burgers, bedrijven, onderzoeksinstellingen en de overheid. Er bestaat in Europa nog geen goed functionerend juridisch-technisch systeem dat rechtszekerheid en een gunstig investeringsklimaat biedt en bovenal is gemaakt met de datagedreven economie in het achterhoofd. We hebben hier te maken met een complex probleem dat in de weg staat aan exponentiële innovatie.

Auteursrechten, Privacy en Rechtsonzekerheid over eigendom van data

De eerste juridische horde bij datadelen is auteursrechtelijk van aard. Ten tweede kunnen er (sui generis) databankenrechten van derden rusten op (delen van) de training-, testing- of validatiedataset. Ten derde zullen bedrijven na een strategische afweging kiezen voor geheimhouding, en niet voor het patenteren van hun technische vondst. Het vierde probleempunt is rechtsonzekerheid over juridisch eigendom van data. Een vijfde belemmering is de vrees voor de Algemene verordening gegevensbescherming (AVG). Onwetendheid en rechtsonzekerheid resulteert hier in risicomijdend gedrag. Het leidt niet tot spectaculaire Europese unicorns die de concurrentie aankunnen met Amerika en China.

Wat is machine learning eigenlijk?

Vertrouwdheid met technische aspecten van data in machine learning geeft juristen, datawetenschappers en beleidsmakers de mogelijkheid om effectiever te communiceren over toekomstige regelgeving voor AI en het delen van data.

Machine learning en datadelen zijn van elementair belang voor de geboorte en de evolutie van AI. En daarmee voor het behoud van onze democratische waarden, welvaart en welzijn. Een machine learning-systeem wordt niet geprogrammeerd, maar getraind. Tijdens het leerproces ontvangt een computer uitgerust met kustmatige intelligentie zowel invoergegevens (trainingdata), als de verwachte, bij deze inputdata behorende antwoorden. Het AI-systeem moet zelf de bijpassende regels en wetmatigheden formuleren met een kunstmatig brein. Algoritmische, voorspellende modellen kunnen vervolgens worden toegepast op nieuwe datasets om nieuwe, correcte antwoorden te produceren.

Dringend nodig: het recht op dataprocessing

De Europese Commissie heeft de ambitie om datasoevereiniteit terug te winnen. Europa moet een internationale datahub worden. Dit vereist een modern juridisch raamwerk in de vorm van de Europese Data Act, die in de loop van 2021 wordt verwacht. Het is naar mijn idee cruciaal dat de Data Act een expliciet recht op dataprocessing bevat.

Technologie is niet neutraal

Tegelijkertijd kan de architectuur van digitale systemen de sociaal-maatschappelijke impact van digitale transformatie reguleren. Een digitaal inclusieve samenleving moet technologie actief vormgeven. Technologie an sich is namelijk nooit neutraal. Maatschappelijke waarden zoals transparantie, vertrouwen, rechtvaardigheid, controle en cybersecurity moeten worden ingebouwd in het design van AI-systemen en de benodigde trainingdatasets, vanaf de eerste regel code.

Meer lezen
Computer generated works: wie of wat is eigenaar?

Deze column is gepubliceerd op platform VerderDenken.nl van het Centrum voor Postacademisch Juridisch Onderwijs (CPO) van de Radboud Universiteit Nijmegen. https://www.ru.nl/cpo/verderdenken/columns/computer-generated-works-eigenaar/

Nieuwe technologieën roepen nieuwe juridische vragen op. Zo ook computers die creatieve werken maken. Wie of wat is de eigenaar van zo’n werk? Mauritz Kop geeft uitleg.

Machines uitgerust met artificiële intelligentie (AI) begeven zich op het terrein van de schone kunsten. Computers schilderen, schrijven en componeren er ijverig op los. Zo genereerde The Next Rembrandt een 3D-geprint meesterwerk, schilderde The Art and Artificial Intelligence Lab een levensechte Mona Lisa, schreef Kurzweils Cybernetic Poet klassieke sonnetten en produceerde Amper Music een complete muziek-cd. Alles in luttele seconden.

Auteursrechten vestigen is problematisch

Het is voorstelbaar dat er auteursrechten rusten op de voortbrengselen van AI-systemen zelf, zoals kunst, muziek, literatuur, uitvindingen, industriële toepassingen, algoritmes, code en andersoortige scheppingen. Men kan zich als wetgever de vraag stellen of er voor computer generated works sui generis categorieën rechten (met een korte looptijd en zonder persoonlijkheidsrechten) in het leven moeten worden geroepen.

Kunnen IE-rechten überhaupt AI-scheppingen beschermen?

De wet in haar huidige vorm erkent geen niet-menselijke auteursrechten. Auteurschap is fundamenteel verbonden met menselijkheid; met scheppingen van de menselijke geest. Dat vloeit bijvoorbeeld voort uit het bekende Infopaq-arrest van het EU Hof van Justitie uit 2009, al is dit arrest niet geschreven met machine learning en kunstmatige intelligentie in het achterhoofd. Is het dogmatisch en doctrinair correct om aan te nemen dat er geen copyright kan zijn op pure AI creations? AI is per slot van rekening niet menselijk en er is bovendien geen menselijke originaliteit en creativiteit aanwezig. Het korte antwoord luidt: ja.

Algoritmisch auteurschap: goed idee of niet?

In tegenstelling tot de benadering van de EU en de VS, heeft het Verenigd Koninkrijk een computer generated works-regime geïmplementeerd, wat betekent dat de programmeur van de AI het auteursrecht krijgt op de output van de machine. Met andere woorden: het VK, en recentelijk ook de Chinese rechter, breiden het menselijke auteurschap uit naar algoritmisch auteurschap.

AI-machine kan geen copyright bezitten

Auteursrechten kunnen alleen eigendom zijn van rechtssubjecten, dus personen of bedrijven. Een AI-machine kan zelf geen copyright bezitten op AI made creations omdat een AI-systeem geen rechtssubjectiviteit en ook geen rechtspersoonlijkheid bezit. AI-systemen kwalificeren als rechtsobject, niet als rechtssubject.

‘Publiek eigendom uit de machine’ en menselijke interventie

Menselijk auteurschap blijft het normatieve orgelpunt van het intellectuele eigendomsrecht. Delen van het meerlagige, uit het Romeinse recht afkomstige eigendomsparadigma kunnen relevant zijn voor AI. Voortbouwend op dit raamwerk is er een nieuw publiek domein model denkbaar voor AI creations and inventions die de autonomiedrempel overschrijden: res publicae ex machina (publiek eigendom uit de machine).

Meer lezen
Data delen als voorwaarde voor een succesvol AI-ecosysteem

Trainingsdatasets voor kunstmatige intelligentie: enkele juridische aspecten

Data delen (data sharing) of liever het vermogen om hoge kwaliteit trainingsdatasets te kunnen analyseren om een AI model -zoals een generative adversarial network- te trainen, is een voorwaarde voor een succesvol AI-ecosysteem in Nederland.

In ons turbulente technologische tijdperk nemen fysieke aanknopingspunten als papier of tastbare producten binnen de context van data -of informatie- in belang af. Informatie is niet langer aan een continent, staat of plaats gebonden. Informatietechnologie zoals kunstmatige intelligentie ontwikkelt zich in een dermate hoog tempo, dat de juridische problemen die daaruit voortvloeien in belangrijke mate onvoorspelbaar zijn. Hierdoor ontstaan -kort gezegd- problemen voor tech startups en scaleups.

In dit artikel een serie -mede in onderlinge samenhang te beschouwen aanbevelingen, suggesties en inventieve oplossingen om anno 2020 tot waardevolle nationale en Europese dataketens te komen.

Data donor codicil

Introductie van een Europees (of nationaal) data donor codicil waarmee een patiënt of consument vrijwillig data kan doneren aan de overheid en/of het bedrijfsleven, AVG-proof. Hier kunnen waardeketens worden gecreëerd door de sensor data van medische Internet of Things (IoT) apparaten en smart wearables van overheidswege te accumuleren. Anoniem of met biomarkers.

Data interoperabel en gestandaardiseerd

Unificatie van data uitwisselingsmodellen zodat deze interoperabel en gestandaardiseerd worden in het IoT. Een voorbeeld is een Europees EPD (Elektronisch Patiënten Dossier), i.e een Electronic Healthcare Record (EMR). AI certificering en standaardisatie (zoals ISO, ANSI, IEEE / IEC) dient bij voorkeur niet te worden uitgevoerd door private partijen met commerciële doelstellingen, maar door onafhankelijke openbare instanties (vergelijk het Amerikaanse FDA).

Machine generated (non) personal data

Een andere categorisering die we kunnen maken is enerzijds publieke (in handen van de overheid) machine generated (non) personal data, en private machine generated (non) personal data. Met machine generated data bedoelen we met name informatie en gegevens die continue door edge devices worden gegenereerd in het Internet of Things (IoT). Deze edge devices staan via edge (of fod) nodes (zenders) in verbinding met datacenters die samen met edge servers de cloud vormen. Deze architectuur noemen we ook wel edge computing.

Juridische dimensie

Data, of informatie heeft een groot aantal juridische dimensies. Aan data delen kleven potentieel intellectueel eigendomsrechtelijke (verbodsrecht en vergoedingsrecht), ethische, grondrechtelijke (privacy, vrijheid van meningsuiting), contractenrechtelijke en internationaal handelsrechtelijke aspecten. Juridisch eigendom op data bestaat anno 2020 niet omdat het -vanuit goederenrechtelijk oogpunt- niet als zaak wordt gekwalificeerd. Data heeft wel vermogensrechtelijke aspecten.

Meer lezen
Intellectual Property at Stanford Law School

USA IP Law at Stanford University

Stanford Law School has a long-standing tradition of sharing its expertise in Intellectual Property, Science and Technology law with legal professionals from around the world. In August 2019, AIRecht managing partner and strategic IP specialist Mauritz Kop had the pleasure to be part of a pre-selected international group of highly talented IP lawyers, counsels and scholars who had the opportunity to bring their professional skills to the next level and study complex IP issues related to Silicon Valley’s hi-tech industry, during an intensive international certificate summer program on U.S. IP law. The international professional American Intellectual Property Law Program at Stanford University is co-directed by Prof. Siegfried Fina, Prof. Mark Lemley and Dr. Roland Vogl.

SLS: A World’s Leading Law School at an Ivy Plus League University

Stanford University is an Ivy Plus League university. Ivy League schools such as Harvard, Yale, Princeton, MIT and Columbia University are viewed as the most prestigious, ranked among the best universities worldwide and have connotations of academic excellence. SLS is one of the world’s leading law schools. The Faculty draws international top talent to its magnificent campus. Stanford Law School’s Program in Law, Science & Technology (LST) has been ranked regularly among the top three intellectual property law programs in the United States, together with the IP Programs (LL.M. and J.D.) of the University of California-Berkeley and the University of New York.

Meer lezen
Cursus AI, Data, Privacy en Innovatie in de Zorg

Suzan Slijpen, Sander Ruiter en Mauritz Kop over AI in de Zorg

Op 31 oktober 2019 gaven Suzan Slijpen, Sander Ruiter en Mauritz Kop een cursus AI, Data, Privacy en Innovatie in de Zorg in het Maasstad Ziekenhuis Rotterdam. Wij waren daar te gast op uitnodiging van Quint Wellington Redwood, een leading consultancy firm die organisaties ondersteunt bij het ontwerpen en operationaliseren van hun digitale strategie waarbij mensen, processen en technologie centraal staan.

Gebruik van patiëntgegevens, medische hulpmiddelen, datadelen, privacy & AI in het ziekenhuis

Doel van cursus was om helderheid te scheppen in de wettelijke regels over het gebruik van patiëntgegevens, datadelen, eigendom van trainingsdatasets, medical devices, privacy en artificiële intelligentie in het ziekenhuis. AIRecht werd ingeschakeld om expertise te geven over dit complexe en uitdagende onderwerp. Om barrières weg te nemen voor innovatie. Onder de aanwezigen waren het Maasstad Ziekenhuis Rotterdam management team, de CISO (Chief Information Security Officer), enkele artsen, radiologen en verpleegkundigen. Ook waren er data scientists uitgenodigd van Parnassia Groep, specialisten in geestelijke gezondheid.

Keynote Digitale Zorg - Medical Devices, Patiëntdata, MDR & AVG

Nieuwe Europese regelgeving (MDR) voor Medical Devices waaronder zorgrobots, medische producten, hulpmiddelen en medische software vanuit een AI-helicopterview, die in 2020 in Nederland van kracht wordt. Verhouding tussen de AVG en de MDR. Gebruik en uitwisseling van patiëntdata, informatiebeveiliging en digitale zorg: wat mag er wel en niet op basis van de Europese Privacywetgeving (AVG/GDPR)?

Meer lezen
AI & Intellectual Property: Towards an Articulated Public Domain

New peer reviewed research article: ‘AI & Intellectual Property: Towards an Articulated Public Domain’ (download)

By Mauritz Kop

Link & citation at Texas Intellectual Property Law Journal (TIPLJ): 28 Tex. Intell. Prop. L. J. 297 (2020)

Link SSRN: https://ssrn.com/abstract=3409715

The article has been published in the Texas Intellectual Property Law Journal (2020, 28). TIPLJ is published in cooperation with the State Bar of Texas three times per year at the University of Texas School of Law. The Journal is the official journal of the State Bar of Texas Intellectual Property Law Section.

Res Publicae ex Machina (Public Property from the Machine)

Building upon the doctrinal body of knowledge, the article introduces a new public domain model for AI Creations and Inventions that crossed the autonomy threshold (i.e. no sufficient amount of human intervention that can be linked to the output): Res Publicae ex Machina (Public Property from the Machine). It includes examples.

Intellectual property framework AI systems

Besides that, the article describes the current legal framework regarding authorship and ownership of AI Creations, legal personhood, patents on AI Inventions, types of IP rights on the various components of the AI system itself (including Digital Twin technology), clearance of training data and data ownership.

Compact Artificial Intelligence & IP overview analysis

Main goal of this research is to offer an accessible, relatively compact Artificial Intelligence (AI) & IP overview analysis and in doing so, to provide some food for thought to interdisciplinary thinkers and policy makers in the IP, tech, privacy and freedom of information field.

Meer lezen
Transparantie en uitlegbaarheid van AI algoritmes

Tijdens het Platform ECP event ‘Transparantie en uitlegbaarheid van AI algoritmes’ gaf AIRecht Managing Partner en lid van de Werkgroep Kunstmatige Intelligentie Mauritz Kop op 27 juni 2019 in Den Haag een korte presentatie over de eerste Europese AI Alliance Conferentie te Brussel, en de aldaar door HLEG Chair Pekka Ala-Pietilä aan EU Commissaris Mariya Gabriel gepresenteerde Policy and Investment Recommendations for Trustworthy AI.

Policy and Investment Recommendations for Trustworthy AI

De Policy and Investment Recommendations for Trustworthy AI van de onafhankelijke High-Level Expert Group on Artificial Intelligence (AI HLEG) bevatten 33 punten, waaronder 11 key takeways die Europese Artificiële Intelligentie naar duurzaamheid, groei en competitiveness moeten leiden. Best practices en Codes of Conduct zoals het ECP AI Impact Assessment spelen in daarin een prominente rol.

Succesvolle eerste Europese AI Alliance Assembly in Brussel

De HLEG kan terugkijken op een succesvolle eerste editie van de Europese AI Alliantie Conferentie in Brussel, die gehouden werd op 26 juni 2019. Tijdens de Assembly - die ook online werd gestreamd - werden de nieuwste prestaties in het AI-beleid en de toekomstperspectieven van de Europese strategie voor kunstmatige intelligentie besproken (i.e. sociale, mensgerichte AI die fundamentele rechten en vrijheden respecteert), inclusief de impact ervan op onze economie en samenleving.

Meer lezen
Legal Status of Robots and AI in Healthcare - Symposium Academy Het Dorp

On December 3, 2018 our office Artificial Intelligence & Law delivered the lecture 'The legal status of smart robots: legal personality, intellectual property and fundamental rights'. On the occasion of the Symposium on robotisation and eHealth in the pharmaceutical industry, organized by Academy Het Dorp and Proeftuin Robotica. The central theme of this seminar on healthcare regulation was: Can you hold a robot liable in case of damages?

How should we deal with liability in robotics?

The following questions were addressed: Should robots equipped with AI have a separate legal status? How do you - as a developer/supplier and consumer/user/patient get a grip on liability for autonomous machines and artificial intelligence algorithms? How do we safeguard ethical principles and fundamental human rights? Who owns intellectual property rights in smart robots and copyrights on computer and AI generated works? How should we deal with liability in robotics?

Meer lezen