Innovation, Technology & Law

Blog over Kunstmatige Intelligentie, Quantum, Deep Learning, Blockchain en Big Data Law

Blog over juridische, sociale, ethische en policy aspecten van Kunstmatige Intelligentie, Quantum Computing, Sensing & Communication, Augmented Reality en Robotica, Big Data Wetgeving en Machine Learning Regelgeving. Kennisartikelen inzake de EU AI Act, de Data Governance Act, cloud computing, algoritmes, privacy, virtual reality, blockchain, robotlaw, smart contracts, informatierecht, ICT contracten, online platforms, apps en tools. Europese regels, auteursrecht, chipsrecht, databankrechten en juridische diensten AI recht.

Berichten in Policy
Establishing a Legal-Ethical Framework for Quantum Technology

Yale Law School, Yale Journal of Law & Technology (YJoLT) The Record 2021

New peer reviewed cross-disciplinary Stanford University Quantum & Law research article: “Establishing a Legal-Ethical Framework for Quantum Technology”.

By Mauritz Kop

Citation: Kop, Mauritz, Establishing a Legal-Ethical Framework for Quantum Technology (March 2, 2021). Yale J.L. & Tech. The Record 2021, https://yjolt.org/blog/establishing-legal-ethical-framework-quantum-technology

Download the article here: Kop_Legal-Ethical Framework for Quantum Tech-Yale

Please find a short abstract below:

What is quantum technology?

Quantum technology is founded on general principles of quantum mechanics and combines the counterintuitive physics of the very small with engineering. Particles and energy at the smallest scale do not follow the same rules as the objects we can detect around us in our everyday lives. The general principles, or properties, of quantum mechanics are superposition, entanglement, and tunnelling. Quantum mechanics aims to clarify the relationship between matter and energy, and it describes the building blocks of atoms at the subatomic level.

Raising Quantum Awareness

Quantum technologies are rapidly evolving from hypothetical ideas to commercial realities. As the world prepares for these tangible applications, the quantum community issued an urgent call for action to design solutions that can balance their transformational impact. An important first step to encourage the debate is raising quantum awareness. We have to put controls in place that address identified risks and incentivise sustainable innovation.

Connecting AI and Nanotechnology to Quantum

Establishing a culturally sensitive legal-ethical framework for applied quantum technologies can help to accomplish these goals. This framework can be built on existing rules and requirements for AI. We can enrich this framework further by integrating ethical, legal and social issues (ELSI) associated with nanotechnology. In addition, the unique physical characteristics of quantum mechanics demand universal guiding principles of responsible, human-centered quantum technology. To this end, the article proposes ten guiding principles for the development and application of quantum technology.

Risk-based Quantum Technology Impact Assessment Tools

Lastly, how can we monitor and validate that real world quantum tech-driven implementations remain legal, ethical, social and technically robust during their life cycle? Developing concrete tools that address these challenges might be the answer. Raising quantum awareness can be accomplished by discussing a legal-ethical framework and by utilizing risk-based technology impact assessment tools in the form of best practices and moral guides.

Mauritz Kop is a Stanford Law School TTLF Fellow, Founder of MusicaJuridica and strategic intellectual property lawyer at AIRecht, a leading 4th Industrial Revolution technology consultancy firm based in Amsterdam, The Netherlands. The author is grateful to Mark Brongersma (Department of Materials Science and Engineering at Stanford University), Mark Lemley (Stanford Law School), and Suzan Slijpen (Slijpen Legal) for valuable cross-disciplinary comments on an earlier version of this article. Thank you Ben Rashkovich and the Yale Journal of Law & Technology for excellent suggestions and editorial support. This article benefitted from comments at the World Economic Forum Quantum Computing Ethics Workshop.

Meer lezen
Workshop Juridische Aspecten AI & Data bij TNO - NL AIC Startups & Scaleups TekDelta Event

Op 24 september 2020 gaf Stanford Law School Fellow Mauritz Kop een masterclass over de juridische dimensie van kunstmatige intelligentie en informatie aan de getalenteerde deelnemers van de Werkgroep Startups & Scaleups van de Nederlandse AI Coalitie (NL AIC), in het kantoor van TNO Research in Den Haag. De workshop maakte onderdeel uit van het TekDelta | NL AIC startup accelerator event, met als centraal thema het versnellen en faciliteren van innovatie door het verbinden van startende ondernemingen met bestaande leading organisaties met slagkracht: het samen bouwen aan een succesvol high tech ecosysteem in Nederland.

Masterclass 'Juridische Aspecten van AI & Data’

De 2,5 uur durende masterclass 'Juridische Aspecten van AI & Data' bij TNO verschafte de cursisten duidelijkheid over de regels voor data delen, privacy en gegevensbescherming, alsmede juridisch en economisch eigendom van informatie. We behandelden onderwerpen variërend van de bescherming van intellectueel eigendom op het AI-systeem, de software, hardware en apps, clearance van data tot het anticiperen op de aanstaande AI & Data Governance wetten van de Europese Commissie.

Multidisciplinair Panel voor Verantwoord Data Delen

Dezelfde middag vond er vanuit het TNO gebouw een online seminar plaats speciaal voor startups, onder leiding van Anita Lieverdink, Senior Orchestrator of Innovation at TNO, Directeur van TekDelta en Program Manager van de Werkgroep Startps & Scaleups van de Nederlandse AI Coalitie.

AIRecht managing partner Mr. Kop nam als juridisch expert deel in het panel dat ging over verantwoord data delen. Het was goed om deel te nemen aan dit multidisciplinaire panel en samen met onze collega's oplossingen te verkennen voor het versneld en verantwoord delen van gegevens. Het is cruciaal en urgent om belemmeringen voor de inzet van benevolente AI weg te nemen en organisaties begeleiding te bieden die rechtszekerheid en vertrouwen in de snelle introductie van deze veelbelovende transformatieve technologie aanmoedigt!

Juridische Cursussen van AIRecht

Onze cursussen ‘AI en Recht – Juridische aspecten van AI, Machine Learning en Data’ bieden een compleet overzicht van de juridische facetten van kunstmatige intelligentie, big (structured/labelled en unstructured, raw) data en de verschillende typen machine learning (supervised, unsupervised, deep reinforcement, transfer, federated). De invalshoek is breed: van beschermen idee tot en met marktintroductie van het product. Cursusdoel is het wegnemen van juridische obstakels voor innovatie. Onderwerpen die hierbij aan de orde komen zijn privacywetgeving, het maximaliseren van uw IP-portfolio (intellectueel eigendom), normering, standaardisering (interoperabiliteit) en certificering (CE mark, keurmerken, conformiteit), het stimuleren van internationaal zakendoen, en het realiseren van (training)data delen op basis van EU regelgeving, licenties, toestemmingen en rechtsgeldige contracten. Maatwerk is mogelijk.

De workshops en masterclasses zijn cross-disciplinair en verbinden de ontwikkeling en toepassing van technologie met geldend nationaal en EU recht.

Meer lezen
Een Juridisch-Ethisch Kader voor Quantum Technologie

Een bewerkte versie van deze bijdrage is gepubliceerd op platform VerderDenken.nl van het Centrum voor Postacademisch Juridisch Onderwijs (CPO) van de Radboud Universiteit Nijmegen. https://www.ru.nl/cpo/verderdenken/columns/we-nederland-voorbereiden-kwantumtoekomst/

Nederland moet zich voorbereiden op de toepassing van kwantumtechnologie, zegt jurist en Stanford Law School Fellow Mauritz Kop. Op het gebied van regulering, intellectueel eigendom en ethiek is er nog veel werk aan de winkel.

De Quantum Age roept veel juridische vragen op

Het gedrag van de natuur op de kleinste schaal kan vreemd en contra-intuïtief zijn. Hoe kunnen beleidsmakers de toepassingsgebieden van kwantumtechnologie, zoals quantum computing, quantum sensing en het quantum internet op een maatschappelijk verantwoorde manier reguleren? Dienen ethische kwesties een rol te spelen in regulering? De Quantum Age roept veel juridische vragen op.

Hoe kunnen we kwantumtechnologie reguleren?

Regulering van transformatieve technologie is een dynamisch, cyclisch proces dat de levensduur van de technologie en de toepassing volgt. Het vraagt om een flexibel wetgevend systeem dat zich snel kan aanpassen aan veranderende omstandigheden en maatschappelijke behoeften.

De eerste regelgevende stap om te komen tot een bruikbaar juridisch-ethisch kader is het koppelen van de Trustworthy AI-principes aan kwantumtechnologie. Die vullen we vervolgens aan met horizontale, overkoepelende regels die recht doen aan de unieke natuurkundige eigenschappen van quantum. Aan deze horizontale kernregels voegt de wetgever tenslotte verticale, industrie- of sectorspecifieke voorschriften toe. Die verticale voorschriften en gedragscodes zijn risk-based en houden rekening met de uiteenlopende behoeftes van economische sectoren waar het duurzame innovatiestimuli betreft. Zo ontstaat een gedifferentieerde, sectorspecifieke benadering aangaande incentives en risks.

Bewustwording van ethische, juridische en sociale aspecten

Een belangrijk onderdeel van het synchroniseren van onze normen, waarden, standaarden en principes met kwantumtechnologie is het creëren van bewustwording van de ethische, juridische en sociale aspecten ervan. De architectuur van systemen die zijn uitgerust met kwantumtechnologie moet waarden vertegenwoordigen die wij als samenleving belangrijk vinden.

Vooruitlopend op spectaculaire doorbraken in de toepassing van kwantumtechnologie is de tijd nu rijp voor regeringen, onderzoeksinstellingen en de markt om regulatoire en intellectuele eigendomsstrategieën voor te bereiden die passen bij de power van de technologie.

Nederland moet zich voorbereiden op een kwantumtoekomst, want die komt eraan.

Meer lezen
Regulating Transformative Technology in The Quantum Age: Intellectual Property, Standardization & Sustainable Innovation

Stanford - Vienna Transatlantic Technology Law Forum, Transatlantic Antitrust and IPR Developments, Stanford University, Issue No. 2/2020

New Stanford cutting edge tech law research: “Regulating Transformative Technology in The Quantum Age: Intellectual Property, Standardization & Sustainable Innovation”.

Download the article here: Kop_Regulation Standardization Innovation Quantum Age-Stanford Law

Quantum technology has many legal aspects

The behavior of nature at the smallest scale can be strange and counterintuitive. In addition to unique physical characteristics, quantum technology has many legal aspects. In this article, we first explain what quantum technology entails. Next, we discuss implementation and areas of application, including quantum computing, quantum sensing and the quantum internet. Through an interdisciplinary lens, we then focus on intellectual property (IP), standardization, ethical, legal & social aspects (ELSA) as well as horizontal & industry-specific regulation of this transformative technology.

The Quantum Age raises many legal questions

The Quantum Age raises many legal questions. For example, which existing legislation applies to quantum technology? What types of IP rights can be vested in the components of a scalable quantum computer? Are there sufficient market-set innovation incentives for the development and dissemination of quantum software and hardware structures? Or is there a need for open source ecosystems, enrichment of the public domain and even democratization of quantum technology? Should we create global quantum safety, security and interoperability standards and make them mandatory in each area of application? In what way can quantum technology enhance artificial intelligence (AI) that is legal, ethical and technically robust?

Regulating quantum computing, quantum sensing & the quantum internet

How can policy makers realize these objectives and regulate quantum computing, quantum sensing and the quantum internet in a socially responsible manner? Regulation that addresses risks in a proportional manner, whilst optimizing the benefits of this cutting edge technology? Without hindering sustainable innovation, including the apportionment of rights, responsibilities and duties of care? What are the effects of standardization and certification on innovation, intellectual property, competition and market-entrance of quantum-startups?

The article explores possible answers to these tantalizing questions.

Meer lezen
Machine Learning & EU Data Sharing Practices

Stanford - Vienna Transatlantic Technology Law Forum, Transatlantic Antitrust and IPR Developments, Stanford University, Issue No. 1/2020

New multidisciplinary research article: ‘Machine Learning & EU Data Sharing Practices’.

Download the article here: Kop_Machine Learning and EU Data Sharing Practices-Stanford University

In short, the article connects the dots between intellectual property (IP) on data, data ownership and data protection (GDPR and FFD), in an easy to understand manner. It also provides AI and Data policy and regulatory recommendations to the EU legislature.

As we all know, machine learning & data science can help accelerate many aspects of the development of drugs, antibody prophylaxis, serology tests and vaccines.

Supervised machine learning needs annotated training datasets

Data sharing is a prerequisite for a successful Transatlantic AI ecosystem. Hand-labelled, annotated training datasets (corpora) are a sine qua non for supervised machine learning. But what about intellectual property (IP) and data protection?

Data that represent IP subject matter are protected by IP rights. Unlicensed (or uncleared) use of machine learning input data potentially results in an avalanche of copyright (reproduction right) and database right (extraction right) infringements. The article offers three solutions that address the input (training) data copyright clearance problem and create breathing room for AI developers.

The article contends that introducing an absolute data property right or a (neighbouring) data producer right for augmented machine learning training corpora or other classes of data is not opportune.

Legal reform and data-driven economy

In an era of exponential innovation, it is urgent and opportune that both the TSD, the CDSM and the DD shall be reformed by the EU Commission with the data-driven economy in mind.

Freedom of expression and information, public domain, competition law

Implementing a sui generis system of protection for AI-generated Creations & Inventions is -in most industrial sectors- not necessary since machines do not need incentives to create or invent. Where incentives are needed, IP alternatives exist. Autonomously generated non-personal data should fall into the public domain. The article argues that strengthening and articulation of competition law is more opportune than extending IP rights.

Data protection and privacy

More and more datasets consist of both personal and non-personal machine generated data. Both the General Data Protection Regulation (GDPR) and the Regulation on the free flow of non-personal data (FFD) apply to these ‘mixed datasets’.

Besides the legal dimensions, the article describes the technical dimensions of data in machine learning and federated learning.

Modalities of future AI-regulation

Society should actively shape technology for good. The alternative is that other societies, with different social norms and democratic standards, impose their values on us through the design of their technology. With built-in public values, including Privacy by Design that safeguards data protection, data security and data access rights, the federated learning model is consistent with Human-Centered AI and the European Trustworthy AI paradigm.

Meer lezen
Data delen als voorwaarde voor een succesvol AI-ecosysteem

Trainingsdatasets voor kunstmatige intelligentie: enkele juridische aspecten

Data delen (data sharing) of liever het vermogen om hoge kwaliteit trainingsdatasets te kunnen analyseren om een AI model -zoals een generative adversarial network- te trainen, is een voorwaarde voor een succesvol AI-ecosysteem in Nederland.

In ons turbulente technologische tijdperk nemen fysieke aanknopingspunten als papier of tastbare producten binnen de context van data -of informatie- in belang af. Informatie is niet langer aan een continent, staat of plaats gebonden. Informatietechnologie zoals kunstmatige intelligentie ontwikkelt zich in een dermate hoog tempo, dat de juridische problemen die daaruit voortvloeien in belangrijke mate onvoorspelbaar zijn. Hierdoor ontstaan -kort gezegd- problemen voor tech startups en scaleups.

In dit artikel een serie -mede in onderlinge samenhang te beschouwen aanbevelingen, suggesties en inventieve oplossingen om anno 2020 tot waardevolle nationale en Europese dataketens te komen.

Data donor codicil

Introductie van een Europees (of nationaal) data donor codicil waarmee een patiënt of consument vrijwillig data kan doneren aan de overheid en/of het bedrijfsleven, AVG-proof. Hier kunnen waardeketens worden gecreëerd door de sensor data van medische Internet of Things (IoT) apparaten en smart wearables van overheidswege te accumuleren. Anoniem of met biomarkers.

Data interoperabel en gestandaardiseerd

Unificatie van data uitwisselingsmodellen zodat deze interoperabel en gestandaardiseerd worden in het IoT. Een voorbeeld is een Europees EPD (Elektronisch Patiënten Dossier), i.e een Electronic Healthcare Record (EMR). AI certificering en standaardisatie (zoals ISO, ANSI, IEEE / IEC) dient bij voorkeur niet te worden uitgevoerd door private partijen met commerciële doelstellingen, maar door onafhankelijke openbare instanties (vergelijk het Amerikaanse FDA).

Machine generated (non) personal data

Een andere categorisering die we kunnen maken is enerzijds publieke (in handen van de overheid) machine generated (non) personal data, en private machine generated (non) personal data. Met machine generated data bedoelen we met name informatie en gegevens die continue door edge devices worden gegenereerd in het Internet of Things (IoT). Deze edge devices staan via edge (of fod) nodes (zenders) in verbinding met datacenters die samen met edge servers de cloud vormen. Deze architectuur noemen we ook wel edge computing.

Juridische dimensie

Data, of informatie heeft een groot aantal juridische dimensies. Aan data delen kleven potentieel intellectueel eigendomsrechtelijke (verbodsrecht en vergoedingsrecht), ethische, grondrechtelijke (privacy, vrijheid van meningsuiting), contractenrechtelijke en internationaal handelsrechtelijke aspecten. Juridisch eigendom op data bestaat anno 2020 niet omdat het -vanuit goederenrechtelijk oogpunt- niet als zaak wordt gekwalificeerd. Data heeft wel vermogensrechtelijke aspecten.

Meer lezen
AI & Intellectual Property: Towards an Articulated Public Domain

New peer reviewed research article: ‘AI & Intellectual Property: Towards an Articulated Public Domain’ (download)

By Mauritz Kop

Link & citation at Texas Intellectual Property Law Journal (TIPLJ): 28 Tex. Intell. Prop. L. J. 297 (2020)

Link SSRN: https://ssrn.com/abstract=3409715

The article has been published in the Texas Intellectual Property Law Journal (2020, 28). TIPLJ is published in cooperation with the State Bar of Texas three times per year at the University of Texas School of Law. The Journal is the official journal of the State Bar of Texas Intellectual Property Law Section.

Res Publicae ex Machina (Public Property from the Machine)

Building upon the doctrinal body of knowledge, the article introduces a new public domain model for AI Creations and Inventions that crossed the autonomy threshold (i.e. no sufficient amount of human intervention that can be linked to the output): Res Publicae ex Machina (Public Property from the Machine). It includes examples.

Intellectual property framework AI systems

Besides that, the article describes the current legal framework regarding authorship and ownership of AI Creations, legal personhood, patents on AI Inventions, types of IP rights on the various components of the AI system itself (including Digital Twin technology), clearance of training data and data ownership.

Compact Artificial Intelligence & IP overview analysis

Main goal of this research is to offer an accessible, relatively compact Artificial Intelligence (AI) & IP overview analysis and in doing so, to provide some food for thought to interdisciplinary thinkers and policy makers in the IP, tech, privacy and freedom of information field.

Meer lezen