Innovation, Technology & Law

Blog over Kunstmatige Intelligentie, Quantum, Deep Learning, Blockchain en Big Data Law

Blog over juridische, sociale, ethische en policy aspecten van Kunstmatige Intelligentie, Quantum Computing, Sensing & Communication, Augmented Reality en Robotica, Big Data Wetgeving en Machine Learning Regelgeving. Kennisartikelen inzake de EU AI Act, de Data Governance Act, cloud computing, algoritmes, privacy, virtual reality, blockchain, robotlaw, smart contracts, informatierecht, ICT contracten, online platforms, apps en tools. Europese regels, auteursrecht, chipsrecht, databankrechten en juridische diensten AI recht.

Berichten in Privacywetgeving
Democratic Countries Should Form a Strategic Tech Alliance

Stanford - Vienna Transatlantic Technology Law Forum, Transatlantic Antitrust and IPR Developments, Stanford University, Issue No. 1/2021

New Stanford innovation policy research: “Democratic Countries Should Form a Strategic Tech Alliance”.

Download the article here: Kop_Democratic Countries-Strategic Tech Alliance-Stanford Law

Exporting values into society through technology

China’s relentless advance in Artificial Intelligence (AI) and quantum computing has engendered a significant amount of anxiety about the future of America’s technological supremacy. The resulting debate centres around the impact of China’s digital rise on the economy, security, employment and the profitability of American companies. Absent in these predominantly economic disquiets is what should be a deeper, existential concern: What are the effects of authoritarian regimes exporting their values into our society through their technology? This essay will address this question by examining how democratic countries can, or should respond, and what you can do about it to influence the outcome.

Towards a global responsible technology governance framework

The essay argues that democratic countries should form a global, broadly scoped Strategic Tech Alliance, built on mutual economic interests and common moral, social and legal norms, technological interoperability standards, legal principles and constitutional values. An Alliance committed to safeguarding democratic norms, as enshrined in the Universal Declaration of Human Rights (UDHR) and the International Covenant on Civil and Political Rights (ICCPR). The US, the EU and its democratic allies should join forces with countries that share our digital DNA, institute fair reciprocal trading conditions, and establish a global responsible technology governance framework that actively pursues democratic freedoms, human rights and the rule of law.

Two dominant tech blocks with incompatible political systems

Currently, two dominant tech blocks exist that have incompatible political systems: the US and China. The competition for AI and quantum ascendancy is a battle between ideologies: liberal democracy mixed with free market capitalism versus authoritarianism blended with surveillance capitalism. Europe stands in the middle, championing a legal-ethical approach to tech governance.

Democratic, value-based Strategic Tech Alliance

The essay discusses political feasibility of cooperation along transatlantic lines, and examines arguments against the formation of a democratic, value-based Strategic Tech Alliance that will set global technology standards. Then, it weighs the described advantages of the establishment of an Alliance that aims to win the race for democratic technological supremacy against disadvantages, unintended consequences and the harms of doing nothing.

Democracy versus authoritarianism: sociocritical perspectives

Further, the essay attempts to approach the identified challenges in light of the ‘democracy versus authoritarianism’ discussion from other, sociocritical perspectives, and inquires whether we are democratic enough ourselves.

How Fourth Industrial Revolution (4IR) technology is shaping our lives

The essay maintains that technology is shaping our everyday lives, and that the way in which we design and utilize our technology is influencing nearly every aspect of the society we live in. Technology is never neutral. The essay describes that regulating emerging technology is an unending endeavour that follows the lifespan of the technology and its implementation. In addition, it debates how democratic countries should construct regulatory solutions that are tailored to the exponential pace of sustainable innovation in the Fourth Industrial Revolution (4IR).

Preventing authoritarianism from gaining ground

The essay concludes that to prevent authoritarianism from gaining ground, governments should do three things: (1) inaugurate a Strategic Tech Alliance, (2) set worldwide core rules, interoperability & conformity standards for key 4IR technologies such as AI, quantum and Virtual Reality (VR), and (3) actively embed our common democratic norms, principles and values into the architecture and infrastructure of our technology.

Meer lezen
Workshop Juridische Aspecten AI & Data bij TNO - NL AIC Startups & Scaleups TekDelta Event

Op 24 september 2020 gaf Stanford Law School Fellow Mauritz Kop een masterclass over de juridische dimensie van kunstmatige intelligentie en informatie aan de getalenteerde deelnemers van de Werkgroep Startups & Scaleups van de Nederlandse AI Coalitie (NL AIC), in het kantoor van TNO Research in Den Haag. De workshop maakte onderdeel uit van het TekDelta | NL AIC startup accelerator event, met als centraal thema het versnellen en faciliteren van innovatie door het verbinden van startende ondernemingen met bestaande leading organisaties met slagkracht: het samen bouwen aan een succesvol high tech ecosysteem in Nederland.

Masterclass 'Juridische Aspecten van AI & Data’

De 2,5 uur durende masterclass 'Juridische Aspecten van AI & Data' bij TNO verschafte de cursisten duidelijkheid over de regels voor data delen, privacy en gegevensbescherming, alsmede juridisch en economisch eigendom van informatie. We behandelden onderwerpen variërend van de bescherming van intellectueel eigendom op het AI-systeem, de software, hardware en apps, clearance van data tot het anticiperen op de aanstaande AI & Data Governance wetten van de Europese Commissie.

Multidisciplinair Panel voor Verantwoord Data Delen

Dezelfde middag vond er vanuit het TNO gebouw een online seminar plaats speciaal voor startups, onder leiding van Anita Lieverdink, Senior Orchestrator of Innovation at TNO, Directeur van TekDelta en Program Manager van de Werkgroep Startps & Scaleups van de Nederlandse AI Coalitie.

AIRecht managing partner Mr. Kop nam als juridisch expert deel in het panel dat ging over verantwoord data delen. Het was goed om deel te nemen aan dit multidisciplinaire panel en samen met onze collega's oplossingen te verkennen voor het versneld en verantwoord delen van gegevens. Het is cruciaal en urgent om belemmeringen voor de inzet van benevolente AI weg te nemen en organisaties begeleiding te bieden die rechtszekerheid en vertrouwen in de snelle introductie van deze veelbelovende transformatieve technologie aanmoedigt!

Juridische Cursussen van AIRecht

Onze cursussen ‘AI en Recht – Juridische aspecten van AI, Machine Learning en Data’ bieden een compleet overzicht van de juridische facetten van kunstmatige intelligentie, big (structured/labelled en unstructured, raw) data en de verschillende typen machine learning (supervised, unsupervised, deep reinforcement, transfer, federated). De invalshoek is breed: van beschermen idee tot en met marktintroductie van het product. Cursusdoel is het wegnemen van juridische obstakels voor innovatie. Onderwerpen die hierbij aan de orde komen zijn privacywetgeving, het maximaliseren van uw IP-portfolio (intellectueel eigendom), normering, standaardisering (interoperabiliteit) en certificering (CE mark, keurmerken, conformiteit), het stimuleren van internationaal zakendoen, en het realiseren van (training)data delen op basis van EU regelgeving, licenties, toestemmingen en rechtsgeldige contracten. Maatwerk is mogelijk.

De workshops en masterclasses zijn cross-disciplinair en verbinden de ontwikkeling en toepassing van technologie met geldend nationaal en EU recht.

Meer lezen
We hebben dringend een recht op dataprocessing nodig

Deze column is gepubliceerd op platform VerderDenken.nl van het Centrum voor Postacademisch Juridisch Onderwijs (CPO) van de Radboud Universiteit Nijmegen. https://www.ru.nl/cpo/verderdenken/columns/we-dringend-recht-dataprocessing-nodig/

5 juridische obstakels voor een succesvol AI-ecosysteem

Eerder schreef ik dat vraagstukken over het (intellectueel) eigendom van data, databescherming en privacy een belemmering vormen voor het (her)gebruiken en delen van hoge kwaliteit data tussen burgers, bedrijven, onderzoeksinstellingen en de overheid. Er bestaat in Europa nog geen goed functionerend juridisch-technisch systeem dat rechtszekerheid en een gunstig investeringsklimaat biedt en bovenal is gemaakt met de datagedreven economie in het achterhoofd. We hebben hier te maken met een complex probleem dat in de weg staat aan exponentiële innovatie.

Auteursrechten, Privacy en Rechtsonzekerheid over eigendom van data

De eerste juridische horde bij datadelen is auteursrechtelijk van aard. Ten tweede kunnen er (sui generis) databankenrechten van derden rusten op (delen van) de training-, testing- of validatiedataset. Ten derde zullen bedrijven na een strategische afweging kiezen voor geheimhouding, en niet voor het patenteren van hun technische vondst. Het vierde probleempunt is rechtsonzekerheid over juridisch eigendom van data. Een vijfde belemmering is de vrees voor de Algemene verordening gegevensbescherming (AVG). Onwetendheid en rechtsonzekerheid resulteert hier in risicomijdend gedrag. Het leidt niet tot spectaculaire Europese unicorns die de concurrentie aankunnen met Amerika en China.

Wat is machine learning eigenlijk?

Vertrouwdheid met technische aspecten van data in machine learning geeft juristen, datawetenschappers en beleidsmakers de mogelijkheid om effectiever te communiceren over toekomstige regelgeving voor AI en het delen van data.

Machine learning en datadelen zijn van elementair belang voor de geboorte en de evolutie van AI. En daarmee voor het behoud van onze democratische waarden, welvaart en welzijn. Een machine learning-systeem wordt niet geprogrammeerd, maar getraind. Tijdens het leerproces ontvangt een computer uitgerust met kustmatige intelligentie zowel invoergegevens (trainingdata), als de verwachte, bij deze inputdata behorende antwoorden. Het AI-systeem moet zelf de bijpassende regels en wetmatigheden formuleren met een kunstmatig brein. Algoritmische, voorspellende modellen kunnen vervolgens worden toegepast op nieuwe datasets om nieuwe, correcte antwoorden te produceren.

Dringend nodig: het recht op dataprocessing

De Europese Commissie heeft de ambitie om datasoevereiniteit terug te winnen. Europa moet een internationale datahub worden. Dit vereist een modern juridisch raamwerk in de vorm van de Europese Data Act, die in de loop van 2021 wordt verwacht. Het is naar mijn idee cruciaal dat de Data Act een expliciet recht op dataprocessing bevat.

Technologie is niet neutraal

Tegelijkertijd kan de architectuur van digitale systemen de sociaal-maatschappelijke impact van digitale transformatie reguleren. Een digitaal inclusieve samenleving moet technologie actief vormgeven. Technologie an sich is namelijk nooit neutraal. Maatschappelijke waarden zoals transparantie, vertrouwen, rechtvaardigheid, controle en cybersecurity moeten worden ingebouwd in het design van AI-systemen en de benodigde trainingdatasets, vanaf de eerste regel code.

Meer lezen
Machine Learning & EU Data Sharing Practices

Stanford - Vienna Transatlantic Technology Law Forum, Transatlantic Antitrust and IPR Developments, Stanford University, Issue No. 1/2020

New multidisciplinary research article: ‘Machine Learning & EU Data Sharing Practices’.

Download the article here: Kop_Machine Learning and EU Data Sharing Practices-Stanford University

In short, the article connects the dots between intellectual property (IP) on data, data ownership and data protection (GDPR and FFD), in an easy to understand manner. It also provides AI and Data policy and regulatory recommendations to the EU legislature.

As we all know, machine learning & data science can help accelerate many aspects of the development of drugs, antibody prophylaxis, serology tests and vaccines.

Supervised machine learning needs annotated training datasets

Data sharing is a prerequisite for a successful Transatlantic AI ecosystem. Hand-labelled, annotated training datasets (corpora) are a sine qua non for supervised machine learning. But what about intellectual property (IP) and data protection?

Data that represent IP subject matter are protected by IP rights. Unlicensed (or uncleared) use of machine learning input data potentially results in an avalanche of copyright (reproduction right) and database right (extraction right) infringements. The article offers three solutions that address the input (training) data copyright clearance problem and create breathing room for AI developers.

The article contends that introducing an absolute data property right or a (neighbouring) data producer right for augmented machine learning training corpora or other classes of data is not opportune.

Legal reform and data-driven economy

In an era of exponential innovation, it is urgent and opportune that both the TSD, the CDSM and the DD shall be reformed by the EU Commission with the data-driven economy in mind.

Freedom of expression and information, public domain, competition law

Implementing a sui generis system of protection for AI-generated Creations & Inventions is -in most industrial sectors- not necessary since machines do not need incentives to create or invent. Where incentives are needed, IP alternatives exist. Autonomously generated non-personal data should fall into the public domain. The article argues that strengthening and articulation of competition law is more opportune than extending IP rights.

Data protection and privacy

More and more datasets consist of both personal and non-personal machine generated data. Both the General Data Protection Regulation (GDPR) and the Regulation on the free flow of non-personal data (FFD) apply to these ‘mixed datasets’.

Besides the legal dimensions, the article describes the technical dimensions of data in machine learning and federated learning.

Modalities of future AI-regulation

Society should actively shape technology for good. The alternative is that other societies, with different social norms and democratic standards, impose their values on us through the design of their technology. With built-in public values, including Privacy by Design that safeguards data protection, data security and data access rights, the federated learning model is consistent with Human-Centered AI and the European Trustworthy AI paradigm.

Meer lezen
Data delen als voorwaarde voor een succesvol AI-ecosysteem

Trainingsdatasets voor kunstmatige intelligentie: enkele juridische aspecten

Data delen (data sharing) of liever het vermogen om hoge kwaliteit trainingsdatasets te kunnen analyseren om een AI model -zoals een generative adversarial network- te trainen, is een voorwaarde voor een succesvol AI-ecosysteem in Nederland.

In ons turbulente technologische tijdperk nemen fysieke aanknopingspunten als papier of tastbare producten binnen de context van data -of informatie- in belang af. Informatie is niet langer aan een continent, staat of plaats gebonden. Informatietechnologie zoals kunstmatige intelligentie ontwikkelt zich in een dermate hoog tempo, dat de juridische problemen die daaruit voortvloeien in belangrijke mate onvoorspelbaar zijn. Hierdoor ontstaan -kort gezegd- problemen voor tech startups en scaleups.

In dit artikel een serie -mede in onderlinge samenhang te beschouwen aanbevelingen, suggesties en inventieve oplossingen om anno 2020 tot waardevolle nationale en Europese dataketens te komen.

Data donor codicil

Introductie van een Europees (of nationaal) data donor codicil waarmee een patiënt of consument vrijwillig data kan doneren aan de overheid en/of het bedrijfsleven, AVG-proof. Hier kunnen waardeketens worden gecreëerd door de sensor data van medische Internet of Things (IoT) apparaten en smart wearables van overheidswege te accumuleren. Anoniem of met biomarkers.

Data interoperabel en gestandaardiseerd

Unificatie van data uitwisselingsmodellen zodat deze interoperabel en gestandaardiseerd worden in het IoT. Een voorbeeld is een Europees EPD (Elektronisch Patiënten Dossier), i.e een Electronic Healthcare Record (EMR). AI certificering en standaardisatie (zoals ISO, ANSI, IEEE / IEC) dient bij voorkeur niet te worden uitgevoerd door private partijen met commerciële doelstellingen, maar door onafhankelijke openbare instanties (vergelijk het Amerikaanse FDA).

Machine generated (non) personal data

Een andere categorisering die we kunnen maken is enerzijds publieke (in handen van de overheid) machine generated (non) personal data, en private machine generated (non) personal data. Met machine generated data bedoelen we met name informatie en gegevens die continue door edge devices worden gegenereerd in het Internet of Things (IoT). Deze edge devices staan via edge (of fod) nodes (zenders) in verbinding met datacenters die samen met edge servers de cloud vormen. Deze architectuur noemen we ook wel edge computing.

Juridische dimensie

Data, of informatie heeft een groot aantal juridische dimensies. Aan data delen kleven potentieel intellectueel eigendomsrechtelijke (verbodsrecht en vergoedingsrecht), ethische, grondrechtelijke (privacy, vrijheid van meningsuiting), contractenrechtelijke en internationaal handelsrechtelijke aspecten. Juridisch eigendom op data bestaat anno 2020 niet omdat het -vanuit goederenrechtelijk oogpunt- niet als zaak wordt gekwalificeerd. Data heeft wel vermogensrechtelijke aspecten.

Meer lezen
What are the main requirements for AI systems in Healthcare?

Main barriers to adoptation of Artificial Intelligence in healthcare.

Absence of a specific AI law, or clear legal framework from the perspective of both professional users (A) and patients (B).

When constructing such a framework, it is important to make a distinction between the various sub-areas of healthcare, such as research and development, professional care providers and recipients of care. Because each sub-area has different needs.

Barriers for professional users.

It is simply unclear for companies and private and academic research institutes in the medical sector what is and is not allowed in the field of AI, blockchain, computer & machine vision and robotics. Both at European level and at national level. This knowledge is important for the commodification of their inventions/creations. Two practical examples are permission from Farmatec and obtaining a CE-marking.

Requirements for sustained use of AI in healthcare.

Since traceability and transparency are key within any healthcare (and food-feed) system, blockchain could play an important role in sustained use of AI in healthcare.

A EU AI Directive or Regulation should be able to implement and/or adhere to principles of Eudralex (The body of European Union legislation in the pharmaceutical sector), Good Manufacturing Practices (GMP) and Good Distribution Practices (GDP) in particular.

Meer lezen
Auteursrechten op slimme software en smart apps

Is de programmeur van de software broncode eigenaar van de auteursrechten op een smart app?

De ontwikkelaar of programmeur van software broncode verkrijgt als maker in de zin van de wet van rechtswege een auteursrecht. Hetzelfde geldt voor de bedenker van online apps of tools. Dit brengt met zich mee dat u als menselijke maker – met uitsluiting van ieder ander - een exclusief recht verkrijgt op de exploitatie van de app. Dat geldt evenzeer voor software waarin blockchain functionaliteit is verwerkt en voor smart apps die op basis van artificiële intelligentie draaien.

Europese Softwarerichtlijn

Functionaliteit van software of apps komt op grond van de Europese Softwarerichtlijn niet in aanmerking voor auteursrechtelijke bescherming. Auteursrechten zijn echter niet de enige intellectuele eigendomsrechten, er bestaan meer juridische instrumenten om uw creaties te beschermen. De naam of het logo van een slimme app kan bijvoorbeeld worden beschermd door het handelsnaamrecht. En onder omstandigheden ook door een merkrecht, na succesvolle registratie van een woordmerk danwel een beeldmerk.

Meer lezen
Auteursrecht, Juridisch Advies, ICT Contracten, Intellectueel Eigendom, Software Licenties, Leveringsvoorwaarden, Tech Startups, Online Platforms, Informatierecht, Internetrecht, Computerrecht, Privacywetgeving, AVG / GDPR, Kunstmatige Intelligentie, Big data, Deep Learning, Machine Learning, Robotlaw, Robotica, Cloud Computing, Algoritmes, Internet of Things, Blockchain, Smart Contracts, Neuraal Netwerk, Medische Producten, Farmaceutica, Entertainment en Kunst, Ethiek, Grondrechten, Artificiële Intelligentie, Virtual Reality, Augmented Reality, Extended Reality, Computer Vision, Cognitive Computing, Wetgeving, Recht, Europese Richtlijn, Quantum Computing, Nano Engineering, Consumentenelektronica, High Tech Industrie, Food Feed Agri, Levensmiddelenrecht, Cosmeticawetgeving, Muziekrecht, Bedrijfsrecht, Arbeidsrecht, Contractenrecht, Productontwikkeling, eMarketing, Energie, Berner ConventieMauritz KopArtificiële Intelligentie & RechtSlimme software, Smart apps, auteursrechten, broncode, online tools, exclusief recht, exploitatie, medische app, reisapp, Mobility as a Service, Internet of Things, reverse engineering, blockchain, nieuwsapp, fitness app, gezondheidsapp, interface, i-Depot, BOIP, Europese Softwarerichtlijn, werk, Auteurswet, makerschap, chipsrecht, octrooirecht, patent, merkrecht, handelsnaamrecht, databankenrecht, werkgeversauteursrecht, co-auteurschap, Computer generated works, neuraal netwerk, arbeidscontract, app-ontwikkelaar, programmeur, ingenieur, big data, persoonlijkheidsrechten, naamsvermelding, wearables, openbaar maken, verveelvoudigen, distributie, onderwijsexceptie, 3-stappentoets, machine learning, software licensing, sui generis recht, modellenrecht, internationaal zakendoen, Berner Conventie, Infopaq II, Softwarerichtlijn, Auteursrechtrichtlijn