Innovation, Quantum-AI Technology & Law

Blog over Kunstmatige Intelligentie, Quantum, Deep Learning, Blockchain en Big Data Law

Blog over juridische, sociale, ethische en policy aspecten van Kunstmatige Intelligentie, Quantum Computing, Sensing & Communication, Augmented Reality en Robotica, Big Data Wetgeving en Machine Learning Regelgeving. Kennisartikelen inzake de EU AI Act, de Data Governance Act, cloud computing, algoritmes, privacy, virtual reality, blockchain, robotlaw, smart contracts, informatierecht, ICT contracten, online platforms, apps en tools. Europese regels, auteursrecht, chipsrecht, databankrechten en juridische diensten AI recht.

Berichten met de tag NATO
Mauritz Kop Speaks at Oxford University on Quantum Threats

Oxford University, 10 November 2025—This afternoon, Professor Mauritz Kop joined distinguished colleagues at the University of Oxford for a high-level panel discussion titled “Quantum Supremacy: Technology, Strategy, and International Order.” Hosted by the Department of Politics and International Relations (DPIR) and the Oxford Emerging Threats & Technology Working Group (ETG), the event convened a diverse audience of scholars, policymakers, and industry leaders to dissect the rapidly evolving landscape of quantum technologies.

Moderated by Sarah Chen, the session moved beyond the hyperbolic headlines often associated with quantum computing to address the granular realities of strategy, governance, and international security. Alongside Kop, the panel featured Dr. Simson Garfinkel of BasisTech, Angus Lockhart of SECQAI, and Professor Michael Holynski of the UK Quantum Technology Research Hub. The resulting dialogue offered a dense, forward-looking examination of quantum threats and opportunities—ranging from the precision of quantum sensing and the urgency of post-quantum cryptography (PQC) to the geopolitical friction points of supply-chain resilience and the risk of sub-optimal governance lock-in.

The Mission of Oxford’s Emerging Threats & Technology Working Group

The context for this discussion was set by the unique mandate of the host organization. The Emerging Threats & Technology Working Group at Oxford University stands as one of the few academic platforms systematically examining how critical and emerging technologies (CETs) reshape the security environment. Meeting regularly to assess the national-security implications of technologies such as artificial intelligence, quantum computing, directed energy, and space systems, the Group brings together participants from academia, industry, and government in a hybrid format.

This institutional design is consequential. By convening interdisciplinary seminars and publishing detailed session reports, Oxford Emerging Threats builds a community capable of treating quantum technology not merely as a laboratory curiosity or a narrow industrial race, but as a systems problem. Within this forum, quantum is framed as a variable that touches deterrence, alliance cohesion, human rights, and the resilience of critical infrastructures. For Stanford RQT (Responsible Quantum Technology), represented by Kop, this mandate aligns closely with the necessity to develop governance, standards, and strategic frameworks that keep quantum innovation compatible with an open, rules-based international order.


Reframing the Narrative: From Quantum Supremacy to Allied Quantum Assurance

In his opening remarks, Kop challenged the utility of the term “quantum supremacy” when applied to state actors. While the term has technical validity in describing a computational threshold, legally and strategically it acts as a misleading metaphor. Kop argued that for democratic states, the more relevant concept is assurance: the ability of allies to deploy quantum-era capabilities in a way that is verifiable, interoperable, and resilient, while simultaneously preserving an open international order.

To operationalize this, Kop proposed the framework of Allied Quantum Assurance, a strategy built upon recognizing that the world is currently crossing a “quantum event horizon.” Much like an astrophysical event horizon represents a point of no return, the current governance tipping point implies that early decisions on standards, export controls, supply chains, and research security will lock allies into long-lasting path dependencies.

The immediate driver of this urgency is the “harvest-now, decrypt-later” (HNDL) risk—a metaphorical “Q-Day” scenario where data exfiltrated today is decrypted by a future, Shor-capable quantum computer. This reality reframes strategic stability: whereas classical nuclear deterrence rests on mutually assured destruction, quantum security centers on deterrence-by-denial, achieved through informational assurance and operational resilience.

Meer lezen
War on the Rocks Publishes "A Bletchley Park for the Quantum Age"

Washington DC, Nov. 6, 2025—War on the Rocks has published a major new commentary by Stanford RQT’s Mauritz Kop, titled “A Bletchley Park for the Quantum Age.” The article translates his broader research on quantum governance into a concrete, operational blueprint for post-quantum cryptography (PQC) migration across the United States and its allies.

Appearing in a venue read closely by practitioners in defence, intelligence, and foreign policy, the piece draws a deliberate conceptual line from the World War II codebreaking effort at Bletchley Park to today’s challenge of securing democratic communications. It argues that Bletchley Park was more than a geographic location; it was a method—an integrated system of science, engineering, operations, and alliance management. Kop contends that a similar methodology is required now to protect national security systems against cryptanalytically relevant quantum computers.

The Enigma Machine utilized a complex series of electromechanical rotors to produce a polyalphabetic substitution cipher, creating an encryption standard that was widely deemed unbreakable by contemporary adversaries. Defeating this system required the Allies to operationalize abstract mathematics into industrial capability, a feat that fundamentally altered the trajectory of the war.

The article situates PQC migration not as a narrow information technology upgrade, but as a core tenet of United States and allied quantum-AI grand strategy. It highlights how flagship programmes such as the United States Department of Defense’s Replicator initiative must be made “quantum-ready” to avoid becoming silently obsolete once large-scale quantum computers arrive.

Professor Kop extends his gratitude to War on the Rocks editor Lieutenant Colonel Walter ‘Rick’ Landgraf, PhD, whose precise editorial work helped sharpen the argument and tailor it to the publication’s strategic readership.

The Core Argument: A Bletchley Method for Post-Quantum Cryptography Migration

The essay begins from a straightforward technical premise. Once fault-tolerant quantum computers exist, Shor’s algorithm will efficiently factor large integers and compute discrete logarithms, thereby breaking the public-key cryptosystems—such as RSA and elliptic-curve cryptography—on which secure communication currently relies. In parallel, Grover’s algorithm will provide a quadratic speed-up in brute-force search, effectively halving the security margin of many symmetric-key schemes.

In this setting, the world’s cryptographic infrastructure cannot simply be patched at the margins. It requires a comprehensive, carefully managed transition to new, quantum-resistant algorithms.

Kop proposes that the United States and its allies apply a “Bletchley method” to this problem by tightly linking:

  1. Domestic execution of PQC migration, and

  2. An allied, standards-based certification compact that prevents fragmentation.

Defensively, this means post-quantum cryptography by default and certified interoperability across critical systems. Politically, it means that Washington earns the right to lead abroad by delivering verifiable results at home.

The framework is organised around two distinct but mutually reinforcing tracks:

  • Track One – “Ultra at Home”: rigorous domestic execution, and

  • Track Two – “Allied Codebook Abroad”: international architecture designed to avoid a “quantum splinternet.”

Meer lezen
Towards an Atomic Agency for Quantum-AI

Stanford, CA May 5, 2025 — Today, Mauritz Kop published interdisciplinary research proposing “A Principled Approach to Quantum Technologies”, and the establishment of an “Atomic Agency for Quantum-AI” on the website of the European Commission. The Atomic Agency essay analyzes emerging AI and quantum technology (including their increasing complementarity and interdependence embodied in quantum-AI hybrids) regulation, export controls, and technical standards in the U.S., EU, and China, comparing legislative efforts anno 2025 to strategically balance the benefits and risks of these transformative technologies through the lens of their distinct innovation systems. The Principled Approach paper posits that quantum technology's dual use character brings with it the need to balance maximizing benefits with mitigating risks. In this spirit, the paper argues that quantum technology development should best be guided by a framework for Responsible Quantum Technology, operationalized by a set of tailored principles to optimize risk-benefit curves. Download the paper here.

Towards an Atomic Agency for Quantum-AI

The article analyzes emerging regulation, export controls, and technical standards for both quantum and AI (including their increasing complementarity and interdependence embodied in quantum-AI hybrids) in the U.S., EU, and China and offers novel conceptual frameworks to steward these technologies towards shared global benefit.

Key Takeaways:

1. Converging Need for Responsible Governance: Despite distinct innovation philosophies (market-driven in the U.S., values-based in the EU, and state-driven in China), there's a growing international consensus on the necessity for principled and responsible technology governance for both AI and quantum technologies.

2. The 'Washington Effect' vs. 'Beijing Effect': The U.S.'s security-centric policies are creating a de facto "Washington effect," potentially setting global rules for quantum law but risking premature regulation. Conversely, China's push for state-aligned standardization (e.g., via the Digital Silk Road) signals a "Beijing effect," which could export autocratic norms and fragment global interoperability, a trend exacerbated by unilateral export controls.

3. Potential U.S., EU and China Visions on a Quantum Governance Act: Given the distinct innovation ecosystems and strategic priorities of the United States, the European Union, and China, it is instructive to envision how each might hypothetically structure a dedicated legislative framework for quantum technologies. The research outlines hypothetical "Quantum Governance Acts" for each, reflecting their respective governance philosophies and innovation models, while also considering pathways towards greater international alignment based on shared values:

a. United States: Removing Barriers for U.S. Quantum Technology Act (deregulation, industrial standards-centric approach, Safeguarding through Advancing quantum technology, prioritizing market dynamism, national & economic security, and defense).

b. European Union: EU Quantum Act (harmonized regulation rooted in fundamental rights and societal benefit based on New Legislative Framework while incorporating elements from European Chips Act, renewed focus on defense via “European DARPA”).

c. China: Comprehensive Quantum Law (Safeguarding state control while Advancing state goals, blending elements of authoritarian governance with surveillance capitalism, integration of civilian and military sectors, self-reliance, exporting state norms & values through technical standards).

4. Global Challenges & Opportunities for Alignment: Faced with planetary challenges like disease, inequality and climate change, aligning on Responsible Quantum Technology (RQT) norms and standards is a critical global opportunity. The article cautions against a simplistic zero-sum game or Cold-War redux narrative for quantum competition, arguing it hinders vital international cooperation.

5. Quantum-Relativistic Innovation Theory of Everything: Philosophical thought experiment to understand innovation dynamics by drawing analogies from quantum mechanics (uncertainty, superposition at micro-level) and general relativity (context, structure at macro-level), theories about the fundamental nature of reality.

6. Smart Regulation and RQT by Design: Effective governance must move beyond mere restrictions to actively incentivize responsible behaviors, promoting "Responsible Quantum Technology (RQT) by design" through flexible instruments like Quantum Impact Assessments (QIA), RQT by design metrics, adaptive, modular legislation, & regulatory sandboxes.

7. Harmonized "Quantum Acquis Planétaire": The article advocates for a global body of Quantum Law ("Quantum Acquis Planétaire"), complemented by sector-specific practices. Such a quantum acquis would be anchored in universal ethical values and translated into foundational standards and agile legal guardrails. This requires inter-continental policymaking and strategic "recoupling" between major players like the U.S. and China, based on incentives and shared values (“what connects us” – e.g. human dignity, security, well-being).

8. An "Atomic Agency for Quantum-AI": A central proposal is the establishment of an international agency modeled after the International Atomic Energy Agency (IAEA). This body would aim to enforce a global acquis, deter a quantum arms race, ensure non-proliferation of dual-use quantum-AI technologies via safeguards implementation (inspired by nuclear governance), and potentially oversee a global UN Quantum Treaty.

9. Need for International Collaboration & Research Platforms: Realizing ambitious goals like fault-tolerant quantum centric supercomputing, and scalable topological qudits unlocking higher-dimensional quantum systems leveraging multi-level logic, requires collective global expertise and collaborative research platforms akin to CERN or ITER, challenging protectionist measures that stifle necessary cooperation. Immediate global actions should focus on leveraging quantum for the UN Sustainable Development Goals (SDGs), mitigating a 'Quantum Divide,' promoting quantum literacy, and building a skilled quantum workforce.

The research underscores the urgent need for robust global quantum-AI governance structures and calls for a shift from purely competitive dynamics towards pragmatic cooperation and the codification of a harmonized global framework.

Meer lezen
Mauritz Kop and Mark Lemley Host Canadian Quantum Governance Delegation at Stanford RQT to Inform its G7 Presidency

Stanford, CA, May 8, 2024—Today, the Stanford Center for Responsible Quantum Technology (RQT) had the privilege of hosting a distinguished Canadian delegation for a critical dialogue on the future of quantum governance. The meeting, held at Stanford Law School, was a pivotal moment for shaping the international policy landscape for these transformative technologies. Professor Mark Lemley and Executive Director Mauritz Kop were honored to welcome senior officials from Global Affairs Canada, the nation’s foreign ministry, for a conversation designed to inform Canada’s quantum policy development efforts ahead of its G7 Presidency in 2025.

A Convergence of Expertise in Law, Technology, and Diplomacy

The success of such a dialogue hinges on the diverse expertise of its participants. On behalf of the Stanford Center for Responsible Quantum Technology, its Founding Director Mauritz Kop was pleased to co-host the session. Professor Kop’s work, which focuses on the ethical, legal, social, and policy implications (ELSPI) of quantum technologies, AI, and cybersecurity, has included serving as a member of the Expert Panel on the Responsible Adoption of Quantum Technologies for the Council of Canadian Academies (CCA). This role provided a direct link to the foundational research shaping Canada's domestic and international quantum strategy.

Kop was joined by his esteemed colleague, Mark Lemley, the William H. Neukom Professor of Law at Stanford Law School and the Director of the Stanford Program in Law, Science, and Technology. As one of the world's preeminent scholars in intellectual property and technology law, Professor Lemley’s insights into innovation, competition, and the legal structures that govern emerging technologies were indispensable to our discussions on incubating startups and navigating the complex IP landscape of the quantum sector.

A Foundation in Evidence: The Council of Canadian Academies' Quantum Potential Report

Our discussions at Stanford did not occur in a vacuum. They were built upon a solid foundation of evidence-based analysis, most notably the 2023 Quantum Potential report from the Council of Canadian Academies (CCA). As a member of the expert panel that authored this report, chaired by the esteemed Professor Raymond Laflamme of the University of Waterloo, Professor Kop was able to directly infuse its findings into our dialogue.

The CCA’s Quantum Potential report was commissioned by the National Research Council of Canada (NRC) and Innovation, Science and Economic Development Canada (ISED) to assess the opportunities and challenges of quantum adoption in Canada. The report provided a clear-eyed assessment, warning that while the potential is transformative, significant scientific and engineering obstacles remain. It highlighted critical national security risks, particularly the potential for a fault-tolerant quantum computer to "undermine the digital infrastructure that underpins key areas of everyday life" and "jeopardize data privacy and security".

Crucially, the report championed a proactive and responsible approach to governance, framed through the lens of "Quantum ELSPI"—the ethical, legal, social, and policy implications of the technology.

The Culmination: The G7 Kananaskis Common Vision on Quantum

The journey from academic analysis and focused diplomatic engagement to international consensus reached its apex on June 17, 2025. Drawing upon the preparatory work from the CCA, the insights from our meeting at Stanford, and extensive multilateral consultations, the Government of Canada, during its G7 Presidency, unveiled the Kananaskis Common Vision for the Future of Quantum Technologies.

This declaration represents a landmark achievement in global technology governance and directly reflects the principles and priorities discussed at our Center. The document acknowledges both the "transformative benefits" of quantum technologies and their "far-reaching implications for national and international security". Echoing the core themes of our dialogue and scholarship, the G7 leaders committed to a set of shared principles that build directly on the work of the RQT community and the CCA report.

G7 Joint Working Group on Quantum Technologies

The meeting with the Canadian delegation at the Stanford Center for Responsible Quantum Technology was a profound demonstration of how academia can effectively inform and shape public policy on a global scale. It showcased a direct pathway from flagship scholarship like the “Ten principles for Responsible Quantum Innovation” and foundational reports like the CCA's Quantum Potential, through focused expert dialogues, to the codification of international norms in a G7 leaders' declaration. We are proud to have played a role in this vital process and look forward to continued collaboration with our Canadian partners and the new G7 Joint Working Group on Quantum Technologies to build a future where quantum technology unfolds responsibly, securely, and for the benefit of all humanity.

Meer lezen